Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

K-nn active learning under local smoothness condition (1902.03055v3)

Published 8 Feb 2019 in stat.ML and cs.LG

Abstract: There is a large body of work on convergence rates either in passive or active learning. Here we outline some of the results that have been obtained, more specifically in a nonparametric setting under assumptions about the smoothness and the margin noise. We also discuss the relative merits of these underlying assumptions by putting active learning in perspective with recent work on passive learning. We provide a novel active learning algorithm with a rate of convergence better than in passive learning, using a particular smoothness assumption customized for $k$-nearest neighbors. This smoothness assumption provides a dependence on the marginal distribution of the instance space unlike other recent algorithms. Our algorithm thus avoids the strong density assumption that supposes the existence of the density function of the marginal distribution of the instance space and is therefore more generally applicable.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.