Papers
Topics
Authors
Recent
2000 character limit reached

K-nn active learning under local smoothness condition (1902.03055v3)

Published 8 Feb 2019 in stat.ML and cs.LG

Abstract: There is a large body of work on convergence rates either in passive or active learning. Here we outline some of the results that have been obtained, more specifically in a nonparametric setting under assumptions about the smoothness and the margin noise. We also discuss the relative merits of these underlying assumptions by putting active learning in perspective with recent work on passive learning. We provide a novel active learning algorithm with a rate of convergence better than in passive learning, using a particular smoothness assumption customized for $k$-nearest neighbors. This smoothness assumption provides a dependence on the marginal distribution of the instance space unlike other recent algorithms. Our algorithm thus avoids the strong density assumption that supposes the existence of the density function of the marginal distribution of the instance space and is therefore more generally applicable.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.