Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rethinking the Discount Factor in Reinforcement Learning: A Decision Theoretic Approach (1902.02893v1)

Published 8 Feb 2019 in cs.LG and cs.AI

Abstract: Reinforcement learning (RL) agents have traditionally been tasked with maximizing the value function of a Markov decision process (MDP), either in continuous settings, with fixed discount factor $\gamma < 1$, or in episodic settings, with $\gamma = 1$. While this has proven effective for specific tasks with well-defined objectives (e.g., games), it has never been established that fixed discounting is suitable for general purpose use (e.g., as a model of human preferences). This paper characterizes rationality in sequential decision making using a set of seven axioms and arrives at a form of discounting that generalizes traditional fixed discounting. In particular, our framework admits a state-action dependent "discount" factor that is not constrained to be less than 1, so long as there is eventual long run discounting. Although this broadens the range of possible preference structures in continuous settings, we show that there exists a unique "optimizing MDP" with fixed $\gamma < 1$ whose optimal value function matches the true utility of the optimal policy, and we quantify the difference between value and utility for suboptimal policies. Our work can be seen as providing a normative justification for (a slight generalization of) Martha White's RL task formalism (2017) and other recent departures from the traditional RL, and is relevant to task specification in RL, inverse RL and preference-based RL.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)