Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Ranked Enumeration of Conjunctive Query Results (1902.02698v6)

Published 7 Feb 2019 in cs.DB

Abstract: We study the problem of enumerating answers of Conjunctive Queries ranked according to a given ranking function. Our main contribution is a novel algorithm with small preprocessing time, logarithmic delay, and non-trivial space usage during execution. To allow for efficient enumeration, we exploit certain properties of ranking functions that frequently occur in practice. To this end, we introduce the notions of {\em decomposable} and {\em compatible} (w.r.t. a query decomposition) ranking functions, which allow for partial aggregation of tuple scores in order to efficiently enumerate the output. We complement the algorithmic results with lower bounds that justify why restrictions on the structure of ranking functions are necessary. Our results extend and improve upon a long line of work that has studied ranked enumeration from both a theoretical and practical perspective.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.