Papers
Topics
Authors
Recent
2000 character limit reached

On Mean Estimation for General Norms with Statistical Queries (1902.02459v1)

Published 7 Feb 2019 in cs.DS

Abstract: We study the problem of mean estimation for high-dimensional distributions, assuming access to a statistical query oracle for the distribution. For a normed space $X = (\mathbb{R}d, |\cdot|X)$ and a distribution supported on vectors $x \in \mathbb{R}d$ with $|x|{X} \leq 1$, the task is to output an estimate $\hat{\mu} \in \mathbb{R}d$ which is $\epsilon$-close in the distance induced by $|\cdot|_X$ to the true mean of the distribution. We obtain sharp upper and lower bounds for the statistical query complexity of this problem when the the underlying norm is symmetric as well as for Schatten-$p$ norms, answering two questions raised by Feldman, Guzm\'{a}n, and Vempala (SODA 2017).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.