Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Mean Estimation for General Norms with Statistical Queries (1902.02459v1)

Published 7 Feb 2019 in cs.DS

Abstract: We study the problem of mean estimation for high-dimensional distributions, assuming access to a statistical query oracle for the distribution. For a normed space $X = (\mathbb{R}d, |\cdot|X)$ and a distribution supported on vectors $x \in \mathbb{R}d$ with $|x|{X} \leq 1$, the task is to output an estimate $\hat{\mu} \in \mathbb{R}d$ which is $\epsilon$-close in the distance induced by $|\cdot|_X$ to the true mean of the distribution. We obtain sharp upper and lower bounds for the statistical query complexity of this problem when the the underlying norm is symmetric as well as for Schatten-$p$ norms, answering two questions raised by Feldman, Guzm\'{a}n, and Vempala (SODA 2017).

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.