Centroid-based deep metric learning for speaker recognition (1902.02375v1)
Abstract: Speaker embedding models that utilize neural networks to map utterances to a space where distances reflect similarity between speakers have driven recent progress in the speaker recognition task. However, there is still a significant performance gap between recognizing speakers in the training set and unseen speakers. The latter case corresponds to the few-shot learning task, where a trained model is evaluated on unseen classes. Here, we optimize a speaker embedding model with prototypical network loss (PNL), a state-of-the-art approach for the few-shot image classification task. The resulting embedding model outperforms the state-of-the-art triplet loss based models in both speaker verification and identification tasks, for both seen and unseen speakers.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.