Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gradient Boosting to Boost the Efficiency of Hydraulic Fracturing (1902.02223v3)

Published 5 Feb 2019 in stat.ML and cs.LG

Abstract: In this paper, we present a data-driven model for forecasting the production increase after hydraulic fracturing (HF). We use data from fracturing jobs performed at one of the Siberian oilfields. The data includes features, characterizing the jobs, and geological information. To predict an oil rate after the fracturing ML technique was applied. We compared the ML-based prediction to a prediction based on the experience of reservoir and production engineers responsible for the HF-job planning. We discuss the potential for further development of ML techniques for predicting changes in oil rate after HF.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.