Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients (1902.02130v6)

Published 6 Feb 2019 in math.NA, cs.NA, math.AP, and math.PR

Abstract: Subsurface flows are commonly modeled by advection-diffusion equations. Insufficient measurements or uncertain material procurement may be accounted for by random coefficients. To represent, for example, transitions in heterogeneous media, the parameters of the equation are spatially discontinuous. Specifically, a scenario with coupled advection- and diffusion coefficients that are modeled as sums of continuous random fields and discontinuous jump components are considered. For the numerical approximation of the solution, an adaptive, pathwise discretization scheme based on a Finite Element approach is introduced. To stabilize the numerical approximation and accelerate convergence, the discrete space-time grid is chosen with respect to the varying discontinuities in each sample of the coefficients, leading to a stochastic formulation of the Galerkin projection and the Finite Element basis.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.