Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Semi-supervised learning via Feedforward-Designed Convolutional Neural Networks (1902.01980v1)

Published 6 Feb 2019 in cs.CV

Abstract: A semi-supervised learning framework using the feedforward-designed convolutional neural networks (FF-CNNs) is proposed for image classification in this work. One unique property of FF-CNNs is that no backpropagation is used in model parameters determination. Since unlabeled data may not always enhance semi-supervised learning, we define an effective quality score and use it to select a subset of unlabeled data in the training process. We conduct experiments on the MNIST, SVHN, and CIFAR-10 datasets, and show that the proposed semi-supervised FF-CNN solution outperforms the CNN trained by backpropagation (BP-CNN) when the amount of labeled data is reduced. Furthermore, we develop an ensemble system that combines the output decision vectors of different semi-supervised FF-CNNs to boost classification accuracy. The ensemble systems can achieve further performance gains on all three benchmarking datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.