Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

IoT Device Fingerprint using Deep Learning (1902.01926v1)

Published 18 Jan 2019 in cs.NI, cs.CV, and cs.LG

Abstract: Device Fingerprinting (DFP) is the identification of a device without using its network or other assigned identities including IP address, Medium Access Control (MAC) address, or International Mobile Equipment Identity (IMEI) number. DFP identifies a device using information from the packets which the device uses to communicate over the network. Packets are received at a router and processed to extract the information. In this paper, we worked on the DFP using Inter Arrival Time (IAT). IAT is the time interval between the two consecutive packets received. This has been observed that the IAT is unique for a device because of different hardware and the software used for the device. The existing work on the DFP uses the statistical techniques to analyze the IAT and to further generate the information using which a device can be identified uniquely. This work presents a novel idea of DFP by plotting graphs of IAT for packets with each graph plotting 100 IATs and subsequently processing the resulting graphs for the identification of the device. This approach improves the efficiency to identify a device DFP due to achieved benchmark of the deep learning libraries in the image processing. We configured Raspberry Pi to work as a router and installed our packet sniffer application on the Raspberry Pi . The packet sniffer application captured the packet information from the connected devices in a log file. We connected two Apple devices iPad4 and iPhone 7 Plus to the router and created IAT graphs for these two devices. We used Convolution Neural Network (CNN) to identify the devices and observed the accuracy of 86.7%.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.