Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Composable Coreset for k-Center in Doubling Metrics (1902.01896v2)

Published 5 Feb 2019 in cs.DS and cs.CG

Abstract: A set of points $P$ in a metric space and a constant integer $k$ are given. The $k$-center problem finds $k$ points as centers among $P$, such that the maximum distance of any point of $P$ to their closest centers $(r)$ is minimized. Doubling metrics are metric spaces in which for any $r$, a ball of radius $r$ can be covered using a constant number of balls of radius $r/2$. Fixed dimensional Euclidean spaces are doubling metrics. The lower bound on the approximation factor of $k$-center is $1.822$ in Euclidean spaces, however, $(1+\epsilon)$-approximation algorithms with exponential dependency on $\frac{1}{\epsilon}$ and $k$ exist. For a given set of sets $P_1,\ldots,P_L$, a composable coreset independently computes subsets $C_1\subset P_1, \ldots, C_L\subset P_L$, such that $\cup_{i=1}L C_i$ contains an approximation of a measure of the set $\cup_{i=1}L P_i$. We introduce a $(1+\epsilon)$-approximation composable coreset for $k$-center, which in doubling metrics has size sublinear in $|P|$. This results in a $(2+\epsilon)$-approximation algorithm for $k$-center in MapReduce with a constant number of rounds in doubling metrics for any $\epsilon>0$ and sublinear communications, which is based on parametric pruning. We prove the exponential nature of the trade-off between the number of centers $(k)$ and the radius $(r)$, and give a composable coreset for a related problem called dual clustering. Also, we give a new version of the parametric pruning algorithm with $O(\frac{nk}{\epsilon})$ running time, $O(n)$ space and $2+\epsilon$ approximation factor for metric $k$-center.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.