Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum Sparse Support Vector Machines (1902.01879v4)

Published 5 Feb 2019 in cs.LG, quant-ph, and stat.ML

Abstract: We analyze the computational complexity of Quantum Sparse Support Vector Machine, a linear classifier that minimizes the hinge loss and the $L_1$ norm of the feature weights vector and relies on a quantum linear programming solver instead of a classical solver. Sparse SVM leads to sparse models that use only a small fraction of the input features in making decisions, and is especially useful when the total number of features, $p$, approaches or exceeds the number of training samples, $m$. We prove a $\Omega(m)$ worst-case lower bound for computational complexity of any quantum training algorithm relying on black-box access to training samples; quantum sparse SVM has at least linear worst-case complexity. However, we prove that there are realistic scenarios in which a sparse linear classifier is expected to have high accuracy, and can be trained in sublinear time in terms of both the number of training samples and the number of features.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)