Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Sparse Support Vector Machines (1902.01879v4)

Published 5 Feb 2019 in cs.LG, quant-ph, and stat.ML

Abstract: We analyze the computational complexity of Quantum Sparse Support Vector Machine, a linear classifier that minimizes the hinge loss and the $L_1$ norm of the feature weights vector and relies on a quantum linear programming solver instead of a classical solver. Sparse SVM leads to sparse models that use only a small fraction of the input features in making decisions, and is especially useful when the total number of features, $p$, approaches or exceeds the number of training samples, $m$. We prove a $\Omega(m)$ worst-case lower bound for computational complexity of any quantum training algorithm relying on black-box access to training samples; quantum sparse SVM has at least linear worst-case complexity. However, we prove that there are realistic scenarios in which a sparse linear classifier is expected to have high accuracy, and can be trained in sublinear time in terms of both the number of training samples and the number of features.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.