Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Metric Learning on Manifolds (1902.01738v1)

Published 5 Feb 2019 in cs.LG and stat.ML

Abstract: Recent literature has shown that symbolic data, such as text and graphs, is often better represented by points on a curved manifold, rather than in Euclidean space. However, geometrical operations on manifolds are generally more complicated than in Euclidean space, and thus many techniques for processing and analysis taken for granted in Euclidean space are difficult on manifolds. A priori, it is not obvious how we may generalize such methods to manifolds. We consider specifically the problem of distance metric learning, and present a framework that solves it on a large class of manifolds, such that similar data are located in closer proximity with respect to the manifold distance function. In particular, we extend the existing metric learning algorithms, and derive the corresponding sample complexity rates for the case of manifolds. Additionally, we demonstrate an improvement of performance in $k$-means clustering and $k$-nearest neighbor classification on real-world complex networks using our methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)