Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Restructuring Conversations using Discourse Relations for Zero-shot Abstractive Dialogue Summarization (1902.01615v2)

Published 5 Feb 2019 in cs.CL

Abstract: Dialogue summarization is a challenging problem due to the informal and unstructured nature of conversational data. Recent advances in abstractive summarization have been focused on data-hungry neural models and adapting these models to a new domain requires the availability of domain-specific manually annotated corpus created by linguistic experts. We propose a zero-shot abstractive dialogue summarization method that uses discourse relations to provide structure to conversations, and then uses an out-of-the-box document summarization model to create final summaries. Experiments on the AMI and ICSI meeting corpus, with document summarization models like PGN and BART, shows that our method improves the ROGUE score by up to 3 points, and even performs competitively against other state-of-the-art methods.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.