Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits (1902.01575v2)
Abstract: We introduce GLR-klUCB, a novel algorithm for the piecewise iid non-stationary bandit problem with bounded rewards. This algorithm combines an efficient bandit algorithm, kl-UCB, with an efficient, parameter-free, changepoint detector, the Bernoulli Generalized Likelihood Ratio Test, for which we provide new theoretical guarantees of independent interest. Unlike previous non-stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be calibrated based on prior knowledge on the arms' means. We prove that this algorithm can attain a $O(\sqrt{TA \Upsilon_T\log(T)})$ regret in $T$ rounds on some "easy" instances, where A is the number of arms and $\Upsilon_T$ the number of change-points, without prior knowledge of $\Upsilon_T$. In contrast with recently proposed algorithms that are agnostic to $\Upsilon_T$, we perform a numerical study showing that GLR-klUCB is also very efficient in practice, beyond easy instances.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.