Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalization Bounds For Unsupervised and Semi-Supervised Learning With Autoencoders (1902.01449v1)

Published 4 Feb 2019 in stat.ML and cs.LG

Abstract: Autoencoders are widely used for unsupervised learning and as a regularization scheme in semi-supervised learning. However, theoretical understanding of their generalization properties and of the manner in which they can assist supervised learning has been lacking. We utilize recent advances in the theory of deep learning generalization, together with a novel reconstruction loss, to provide generalization bounds for autoencoders. To the best of our knowledge, this is the first such bound. We further show that, under appropriate assumptions, an autoencoder with good generalization properties can improve any semi-supervised learning scheme. We support our theoretical results with empirical demonstrations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)