Papers
Topics
Authors
Recent
2000 character limit reached

Robustness Certificates Against Adversarial Examples for ReLU Networks (1902.01235v2)

Published 1 Feb 2019 in cs.LG and stat.ML

Abstract: While neural networks have achieved high performance in different learning tasks, their accuracy drops significantly in the presence of small adversarial perturbations to inputs. Defenses based on regularization and adversarial training are often followed by new attacks to defeat them. In this paper, we propose attack-agnostic robustness certificates for a multi-label classification problem using a deep ReLU network. Although computing the exact distance of a given input sample to the classification decision boundary requires solving a non-convex optimization, we characterize two lower bounds for such distances, namely the simplex certificate and the decision boundary certificate. These robustness certificates leverage the piece-wise linear structure of ReLU networks and use the fact that in a polyhedron around a given sample, the prediction function is linear. In particular, the proposed simplex certificate has a closed-form, is differentiable and is an order of magnitude faster to compute than the existing methods even for deep networks. In addition to theoretical bounds, we provide numerical results for our certificates over MNIST and compare them with some existing upper bounds.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.