Papers
Topics
Authors
Recent
2000 character limit reached

New Risk Bounds for 2D Total Variation Denoising (1902.01215v4)

Published 4 Feb 2019 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: 2D Total Variation Denoising (TVD) is a widely used technique for image denoising. It is also an important nonparametric regression method for estimating functions with heterogenous smoothness. Recent results have shown the TVD estimator to be nearly minimax rate optimal for the class of functions with bounded variation. In this paper, we complement these worst case guarantees by investigating the adaptivity of the TVD estimator to functions which are piecewise constant on axis aligned rectangles. We rigorously show that, when the truth is piecewise constant, the ideally tuned TVD estimator performs better than in the worst case. We also study the issue of choosing the tuning parameter. In particular, we propose a fully data driven version of the TVD estimator which enjoys similar worst case risk guarantees as the ideally tuned TVD estimator.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.