Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep One-Class Classification Using Intra-Class Splitting (1902.01194v4)

Published 4 Feb 2019 in cs.LG and stat.ML

Abstract: This paper introduces a generic method which enables to use conventional deep neural networks as end-to-end one-class classifiers. The method is based on splitting given data from one class into two subsets. In one-class classification, only samples of one normal class are available for training. During inference, a closed and tight decision boundary around the training samples is sought which conventional binary or multi-class neural networks are not able to provide. By splitting data into typical and atypical normal subsets, the proposed method can use a binary loss and defines an auxiliary subnetwork for distance constraints in the latent space. Various experiments on three well-known image datasets showed the effectiveness of the proposed method which outperformed seven baselines and had a better or comparable performance to the state-of-the-art.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.