Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

2-D Embedding of Large and High-dimensional Data with Minimal Memory and Computational Time Requirements (1902.01108v1)

Published 4 Feb 2019 in cs.LG and stat.ML

Abstract: In the advent of big data era, interactive visualization of large data sets consisting of M*105+ high-dimensional feature vectors of length N (N ~ 103+), is an indispensable tool for data exploratory analysis. The state-of-the-art data embedding (DE) methods of N-D data into 2-D (3-D) visually perceptible space (e.g., based on t-SNE concept) are too demanding computationally to be efficiently employed for interactive data analytics of large and high-dimensional datasets. Herein we present a simple method, ivhd (interactive visualization of high-dimensional data tool), which radically outperforms the modern data-embedding algorithms in both computational and memory loads, while retaining high quality of N-D data embedding in 2-D (3-D). We show that DE problem is equivalent to the nearest neighbor nn-graph visualization, where only indices of a few nearest neighbors of each data sample has to be known, and binary distance between data samples -- 0 to the nearest and 1 to the other samples -- is defined. These improvements reduce the time-complexity and memory load from O(M log M) to O(M), and ensure minimal O(M) proportionality coefficient as well. We demonstrate high efficiency, quality and robustness of ivhd on popular benchmark datasets such as MNIST, 20NG, NORB and RCV1.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube