Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Jumping Manifolds: Geometry Aware Dense Non-Rigid Structure from Motion (1902.01077v3)

Published 4 Feb 2019 in cs.CV

Abstract: Given dense image feature correspondences of a non-rigidly moving object across multiple frames, this paper proposes an algorithm to estimate its 3D shape for each frame. To solve this problem accurately, the recent state-of-the-art algorithm reduces this task to set of local linear subspace reconstruction and clustering problem using Grassmann manifold representation \cite{kumar2018scalable}. Unfortunately, their method missed on some of the critical issues associated with the modeling of surface deformations, for e.g., the dependence of a local surface deformation on its neighbors. Furthermore, their representation to group high dimensional data points inevitably introduce the drawbacks of categorizing samples on the high-dimensional Grassmann manifold \cite{huang2015projection, harandi2014manifold}. Hence, to deal with such limitations with \cite{kumar2018scalable}, we propose an algorithm that jointly exploits the benefit of high-dimensional Grassmann manifold to perform reconstruction, and its equivalent lower-dimensional representation to infer suitable clusters. To accomplish this, we project each Grassmannians onto a lower-dimensional Grassmann manifold which preserves and respects the deformation of the structure w.r.t its neighbors. These Grassmann points in the lower-dimension then act as a representative for the selection of high-dimensional Grassmann samples to perform each local reconstruction. In practice, our algorithm provides a geometrically efficient way to solve dense NRSfM by switching between manifolds based on its benefit and usage. Experimental results show that the proposed algorithm is very effective in handling noise with reconstruction accuracy as good as or better than the competing methods.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)