Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complexity, Statistical Risk, and Metric Entropy of Deep Nets Using Total Path Variation (1902.00800v2)

Published 2 Feb 2019 in stat.ML and cs.LG

Abstract: For any ReLU network there is a representation in which the sum of the absolute values of the weights into each node is exactly $1$, and the input layer variables are multiplied by a value $V$ coinciding with the total variation of the path weights. Implications are given for Gaussian complexity, Rademacher complexity, statistical risk, and metric entropy, all of which are shown to be proportional to $V$. There is no dependence on the number of nodes per layer, except for the number of inputs $d$. For estimation with sub-Gaussian noise, the mean square generalization error bounds that can be obtained are of order $V \sqrt{L + \log d}/\sqrt{n}$, where $L$ is the number of layers and $n$ is the sample size.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube