Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Eternal domination on prisms of graphs (1902.00799v1)

Published 2 Feb 2019 in cs.DM and math.CO

Abstract: An eternal dominating set of a graph $G$ is a set of vertices (or "guards") which dominates $G$ and which can defend any infinite series of vertex attacks, where an attack is defended by moving one guard along an edge from its current position to the attacked vertex. The size of the smallest eternal dominating set is denoted $\gamma\infty(G)$ and is called the eternal domination number of $G$. In this paper, we answer a conjecture of Klostermeyer and Mynhardt [Discussiones Mathematicae Graph Theory, vol. 35, pp. 283-300], showing that there exist there are infinitely many graphs $G$ such that $\gamma\infty(G)=\theta(G)$ and $\gamma\infty(G \Box K_2)<\theta(G \Box K_2)$, where $\theta(G)$ denotes the clique cover number of $G$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.