Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Word Embeddings for Sentiment Analysis: A Comprehensive Empirical Survey (1902.00753v1)

Published 2 Feb 2019 in cs.CL and cs.IR

Abstract: This work investigates the role of factors like training method, training corpus size and thematic relevance of texts in the performance of word embedding features on sentiment analysis of tweets, song lyrics, movie reviews and item reviews. We also explore specific training or post-processing methods that can be used to enhance the performance of word embeddings in certain tasks or domains. Our empirical observations indicate that models trained with multithematic texts that are large and rich in vocabulary are the best in answering syntactic and semantic word analogy questions. We further observe that influence of thematic relevance is stronger on movie and phone reviews, but weaker on tweets and lyrics. These two later domains are more sensitive to corpus size and training method, with Glove outperforming Word2vec. "Injecting" extra intelligence from lexicons or generating sentiment specific word embeddings are two prominent alternatives for increasing performance of word embedding features.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube