Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Making a Case for Social Media Corpus for Detecting Depression (1902.00702v1)

Published 2 Feb 2019 in cs.CL

Abstract: The social media platform provides an opportunity to gain valuable insights into user behaviour. Users mimic their internal feelings and emotions in a disinhibited fashion using natural language. Techniques in Natural Language Processing have helped researchers decipher standard documents and cull together inferences from massive amount of data. A representative corpus is a prerequisite for NLP and one of the challenges we face today is the non-standard and noisy language that exists on the internet. Our work focuses on building a corpus from social media that is focused on detecting mental illness. We use depression as a case study and demonstrate the effectiveness of using such a corpus for helping practitioners detect such cases. Our results show a high correlation between our Social Media Corpus and the standard corpus for depression.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.