Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making a Case for Social Media Corpus for Detecting Depression (1902.00702v1)

Published 2 Feb 2019 in cs.CL

Abstract: The social media platform provides an opportunity to gain valuable insights into user behaviour. Users mimic their internal feelings and emotions in a disinhibited fashion using natural language. Techniques in Natural Language Processing have helped researchers decipher standard documents and cull together inferences from massive amount of data. A representative corpus is a prerequisite for NLP and one of the challenges we face today is the non-standard and noisy language that exists on the internet. Our work focuses on building a corpus from social media that is focused on detecting mental illness. We use depression as a case study and demonstrate the effectiveness of using such a corpus for helping practitioners detect such cases. Our results show a high correlation between our Social Media Corpus and the standard corpus for depression.

Citations (10)

Summary

We haven't generated a summary for this paper yet.