Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiuser Video Streaming Rate Adaptation: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach (1902.00637v1)

Published 2 Feb 2019 in cs.MM and eess.SP

Abstract: We consider a multi-user video streaming service optimization problem over a time-varying and mutually interfering multi-cell wireless network. The key research challenge is to appropriately adapt each user's video streaming rate according to the radio frequency environment (e.g., channel fading and interference level) and service demands (e.g., play request), so that the users' long-term experience for watching videos can be optimized. To address the above challenge, we propose a novel two-level cross-layer optimization framework for multiuser adaptive video streaming over wireless networks. The key idea is to jointly design the physical layer optimization-based beamforming scheme (performed at the base stations) and the application layer Deep Reinforcement Learning (DRL)-based scheme (performed at the user terminals), so that a highly complex multi-user, cross-layer, time-varying video streaming problem can be decomposed into relatively simple problems and solved effectively. Our strategy represents a significant departure for the existing schemes where either short-term user experience optimization is considered, or only single-user point-to-point long-term optimization is considered. Extensive simulations based on real-data sets show that the proposed cross-layer design is effective and promising.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.