Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Medical Image Super-Resolution Using a Generative Adversarial Network (1902.00369v3)

Published 30 Jan 2019 in cs.CV, cs.NA, and math.NA

Abstract: During the growing popularity of electronic medical records, electronic medical record (EMR) data has exploded increasingly. It is very meaningful to retrieve high quality EMR in mass data. In this paper, an EMR value network with retrieval function is constructed by taking stroke disease as the research object. It mainly includes: 1) It establishes the electronic medical record database and corresponding stroke knowledge graph. 2) The strategy of similarity measurement is included three parts(patients' chief complaint, pathology results and medical images). Patients' chief complaints are text data, mainly describing patients' symptoms and expressed in words or phrases, and patients' chief complaints are input in independent tick of various symptoms. The data of the pathology results is a structured and digitized expression, so the input method is the same as the patient's chief complaint; Image similarity adopts content-based image retrieval(CBIR) technology. 3) The analytic hierarchy process (AHP) is used to establish the weights of the three types of data and then synthesize them into an indicator. The accuracy rate of similarity in top 5 was more than 85\% based on EMR database with more 200 stroke records using leave-one-out method. It will be the good tool for assistant diagnosis and doctor training, as good quality records are colleted into the databases, like Doctor Watson, in the future.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube