Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SensitiveNets: Learning Agnostic Representations with Application to Face Images (1902.00334v3)

Published 1 Feb 2019 in cs.CV

Abstract: This work proposes a novel privacy-preserving neural network feature representation to suppress the sensitive information of a learned space while maintaining the utility of the data. The new international regulation for personal data protection forces data controllers to guarantee privacy and avoid discriminative hazards while managing sensitive data of users. In our approach, privacy and discrimination are related to each other. Instead of existing approaches aimed directly at fairness improvement, the proposed feature representation enforces the privacy of selected attributes. This way fairness is not the objective, but the result of a privacy-preserving learning method. This approach guarantees that sensitive information cannot be exploited by any agent who process the output of the model, ensuring both privacy and equality of opportunity. Our method is based on an adversarial regularizer that introduces a sensitive information removal function in the learning objective. The method is evaluated on three different primary tasks (identity, attractiveness, and smiling) and three publicly available benchmarks. In addition, we present a new face annotation dataset with balanced distribution between genders and ethnic origins. The experiments demonstrate that it is possible to improve the privacy and equality of opportunity while retaining competitive performance independently of the task.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.