Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sharp Analysis for Nonconvex SGD Escaping from Saddle Points (1902.00247v2)

Published 1 Feb 2019 in math.OC, cs.CC, and cs.LG

Abstract: In this paper, we give a sharp analysis for Stochastic Gradient Descent (SGD) and prove that SGD is able to efficiently escape from saddle points and find an $(\epsilon, O(\epsilon{0.5}))$-approximate second-order stationary point in $\tilde{O}(\epsilon{-3.5})$ stochastic gradient computations for generic nonconvex optimization problems, when the objective function satisfies gradient-Lipschitz, Hessian-Lipschitz, and dispersive noise assumptions. This result subverts the classical belief that SGD requires at least $O(\epsilon{-4})$ stochastic gradient computations for obtaining an $(\epsilon,O(\epsilon{0.5}))$-approximate second-order stationary point. Such SGD rate matches, up to a polylogarithmic factor of problem-dependent parameters, the rate of most accelerated nonconvex stochastic optimization algorithms that adopt additional techniques, such as Nesterov's momentum acceleration, negative curvature search, as well as quadratic and cubic regularization tricks. Our novel analysis gives new insights into nonconvex SGD and can be potentially generalized to a broad class of stochastic optimization algorithms.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube