Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharp Analysis of Expectation-Maximization for Weakly Identifiable Models (1902.00194v4)

Published 1 Feb 2019 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We study a class of weakly identifiable location-scale mixture models for which the maximum likelihood estimates based on $n$ i.i.d. samples are known to have lower accuracy than the classical $n{- \frac{1}{2}}$ error. We investigate whether the Expectation-Maximization (EM) algorithm also converges slowly for these models. We provide a rigorous characterization of EM for fitting a weakly identifiable Gaussian mixture in a univariate setting where we prove that the EM algorithm converges in order $n{\frac{3}{4}}$ steps and returns estimates that are at a Euclidean distance of order ${ n{- \frac{1}{8}}}$ and ${ n{-\frac{1} {4}}}$ from the true location and scale parameter respectively. Establishing the slow rates in the univariate setting requires a novel localization argument with two stages, with each stage involving an epoch-based argument applied to a different surrogate EM operator at the population level. We demonstrate several multivariate ($d \geq 2$) examples that exhibit the same slow rates as the univariate case. We also prove slow statistical rates in higher dimensions in a special case, when the fitted covariance is constrained to be a multiple of the identity.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube