Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Influence Maximization under General Feedback Models (1902.00192v3)

Published 1 Feb 2019 in cs.SI

Abstract: Influence maximization is a prototypical problem enabling applications in various domains, and it has been extensively studied in the past decade. The classic influence maximization problem explores the strategies for deploying seed users before the start of the diffusion process such that the total influence can be maximized. In its adaptive version, seed nodes are allowed to be launched in an adaptive manner after observing certain diffusion results. In this paper, we provide a systematic study on the adaptive influence maximization problem, focusing on the algorithmic analysis of the scenarios when it is not adaptive submodular. We introduce the concept of regret ratio which characterizes the key trade-off in designing adaptive seeding strategies, based on which we present the approximation analysis for the well-known greedy policy. In addition, we provide analysis concerning improving the efficiencies and bounding the regret ratio. Finally, we propose several future research directions.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)