Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Analysis of State Evolution for Approximate Message Passing with Side Information (1902.00150v2)

Published 1 Feb 2019 in cs.IT and math.IT

Abstract: A common goal in many research areas is to reconstruct an unknown signal x from noisy linear measurements. Approximate message passing (AMP) is a class of low-complexity algorithms for efficiently solving such high-dimensional regression tasks. Often, it is the case that side information (SI) is available during reconstruction. For this reason a novel algorithmic framework that incorporates SI into AMP, referred to as approximate message passing with side information (AMP-SI), has been recently introduced. An attractive feature of AMP is that when the elements of the signal are exchangeable, the entries of the measurement matrix are independent and identically distributed (i.i.d.) Gaussian, and the denoiser applies the same non-linearity at each entry, the performance of AMP can be predicted accurately by a scalar iteration referred to as state evolution (SE). However, the AMP-SI framework uses different entry-wise scalar denoisers, based on the entry-wise level of the SI, and therefore is not supported by the standard AMP theory. In this work, we provide rigorous performance guarantees for AMP-SI when the input signal and SI are drawn i.i.d. according to some joint distribution subject to finite moment constraints. Moreover, we provide numerical examples to support the theory which demonstrate empirically that the SE can predict the AMP-SI mean square error accurately.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.