Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plan-Structured Deep Neural Network Models for Query Performance Prediction (1902.00132v1)

Published 31 Jan 2019 in cs.DB

Abstract: Query performance prediction, the task of predicting the latency of a query, is one of the most challenging problem in database management systems. Existing approaches rely on features and performance models engineered by human experts, but often fail to capture the complex interactions between query operators and input relations, and generally do not adapt naturally to workload characteristics and patterns in query execution plans. In this paper, we argue that deep learning can be applied to the query performance prediction problem, and we introduce a novel neural network architecture for the task: a plan-structured neural network. Our approach eliminates the need for human-crafted feature selection and automatically discovers complex performance models both at the operator and query plan level. Our novel neural network architecture can match the structure of any optimizer-selected query execution plan and predict its latency with high accuracy. We also propose a number of optimizations that reduce training overhead without sacrificing effectiveness. We evaluated our techniques on various workloads and we demonstrate that our plan-structured neural network can outperform the state-of-the-art in query performance prediction.

Citations (129)

Summary

We haven't generated a summary for this paper yet.