Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probability of Error for Detecting a Change in a Parameter, Total Variation of the Posterior Distribution, and Bayesian Fisher Information (1902.00099v1)

Published 31 Jan 2019 in cs.IT and math.IT

Abstract: The van Trees inequality relates the Ensemble Mean Squared Error of an estimator to a Bayesian version of the Fisher Information. The Ziv-Zakai inequality relates the Ensemble Mean Squared Error of an estimator to the Minimum Probability of Error for the task of detecting a change in the parameter. In this work we complete this circle by deriving an inequality that relates this Minimum Probability of Error to the Bayesian version of the Fisher Information. We discuss this result for both scalar and vector parameters. In the process we discover that an important intermediary in the calculation is the Total Variation of the posterior probability distribiution function for the parameter given the data. This total variation is of interest in its own right since it may be easier to compute than the other figures of merit discussed here. Examples are provided to show that the inequality derived here is sharp.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)