Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to navigate image manifolds induced by generative adversarial networks for unsupervised video generation (1901.11384v1)

Published 23 Jan 2019 in cs.CV, cs.LG, and stat.ML

Abstract: In this work, we introduce a two-step framework for generative modeling of temporal data. Specifically, the generative adversarial networks (GANs) setting is employed to generate synthetic scenes of moving objects. To do so, we propose a two-step training scheme within which: a generator of static frames is trained first. Afterwards, a recurrent model is trained with the goal of providing a sequence of inputs to the previously trained frames generator, thus yielding scenes which look natural. The adversarial setting is employed in both training steps. However, with the aim of avoiding known training instabilities in GANs, a multiple discriminator approach is used to train both models. Results in the studied video dataset indicate that, by employing such an approach, the recurrent part is able to learn how to coherently navigate the image manifold induced by the frames generator, thus yielding more natural-looking scenes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.