Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Multi-armed Bandit Algorithm for Semiparametric Reward Model (1901.11221v1)

Published 31 Jan 2019 in stat.ML and cs.LG

Abstract: Contextual multi-armed bandit (MAB) algorithms have been shown promising for maximizing cumulative rewards in sequential decision tasks such as news article recommendation systems, web page ad placement algorithms, and mobile health. However, most of the proposed contextual MAB algorithms assume linear relationships between the reward and the context of the action. This paper proposes a new contextual MAB algorithm for a relaxed, semiparametric reward model that supports nonstationarity. The proposed method is less restrictive, easier to implement and faster than two alternative algorithms that consider the same model, while achieving a tight regret upper bound. We prove that the high-probability upper bound of the regret incurred by the proposed algorithm has the same order as the Thompson sampling algorithm for linear reward models. The proposed and existing algorithms are evaluated via simulation and also applied to Yahoo! news article recommendation log data.

Citations (13)

Summary

We haven't generated a summary for this paper yet.