Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection Challenge (1901.10802v1)

Published 30 Jan 2019 in cs.CV and cs.AI

Abstract: In this paper, we studied extensively on different deep learning based methods to detect melanoma and skin lesion cancers. Melanoma, a form of malignant skin cancer is very threatening to health. Proper diagnosis of melanoma at an earlier stage is crucial for the success rate of complete cure. Dermoscopic images with Benign and malignant forms of skin cancer can be analyzed by computer vision system to streamline the process of skin cancer detection. In this study, we experimented with various neural networks which employ recent deep learning based models like PNASNet-5-Large, InceptionResNetV2, SENet154, InceptionV4. Dermoscopic images are properly processed and augmented before feeding them into the network. We tested our methods on International Skin Imaging Collaboration (ISIC) 2018 challenge dataset. Our system has achieved best validation score of 0.76 for PNASNet-5-Large model. Further improvement and optimization of the proposed methods with a bigger training dataset and carefully chosen hyper-parameter could improve the performances. The code available for download at https://github.com/miltonbd/ISIC_2018_classification

Citations (108)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube