Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Doubly Sparse: Sparse Mixture of Sparse Experts for Efficient Softmax Inference (1901.10668v2)

Published 30 Jan 2019 in cs.LG and stat.ML

Abstract: Computations for the softmax function are significantly expensive when the number of output classes is large. In this paper, we present a novel softmax inference speedup method, Doubly Sparse Softmax (DS-Softmax), that leverages sparse mixture of sparse experts to efficiently retrieve top-k classes. Different from most existing methods that require and approximate a fixed softmax, our method is learning-based and can adapt softmax weights for a better inference speedup. In particular, our method learns a two-level hierarchy which divides entire output class space into several partially overlapping experts. Each expert is sparse and only contains a subset of output classes. To find top-k classes, a sparse mixture enables us to find the most probable expert quickly, and the sparse expert enables us to search within a small-scale softmax. We empirically conduct evaluation on several real-world tasks, including neural machine translation, LLMing and image classification, and demonstrate that significant computation reductions can be achieved at no performance loss.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.