Papers
Topics
Authors
Recent
2000 character limit reached

Doubly Sparse: Sparse Mixture of Sparse Experts for Efficient Softmax Inference (1901.10668v2)

Published 30 Jan 2019 in cs.LG and stat.ML

Abstract: Computations for the softmax function are significantly expensive when the number of output classes is large. In this paper, we present a novel softmax inference speedup method, Doubly Sparse Softmax (DS-Softmax), that leverages sparse mixture of sparse experts to efficiently retrieve top-k classes. Different from most existing methods that require and approximate a fixed softmax, our method is learning-based and can adapt softmax weights for a better inference speedup. In particular, our method learns a two-level hierarchy which divides entire output class space into several partially overlapping experts. Each expert is sparse and only contains a subset of output classes. To find top-k classes, a sparse mixture enables us to find the most probable expert quickly, and the sparse expert enables us to search within a small-scale softmax. We empirically conduct evaluation on several real-world tasks, including neural machine translation, language modeling and image classification, and demonstrate that significant computation reductions can be achieved at no performance loss.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.