Feature Concatenation Multi-view Subspace Clustering (1901.10657v6)
Abstract: Multi-view clustering is a learning paradigm based on multi-view data. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features straightforward. However, feature concatenation is a natural way to combine multi-view data. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC), which boosts the clustering performance by exploring the consensus information of multi-view data. Specifically, multi-view data are concatenated into a joint representation firstly, then, $l_{2,1}$-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views. Moreover, a graph regularized FCMSC is also proposed in this paper to explore both the consensus information and complementary information of multi-view data for clustering. It is noteworthy that the obtained coefficient matrix is not derived by simply applying the Low-Rank Representation (LRR) to concatenated features directly. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimize the objective functions. Comprehensive experiments on six real-world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.