Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reparameterizable Subset Sampling via Continuous Relaxations (1901.10517v5)

Published 29 Jan 2019 in cs.LG and stat.ML

Abstract: Many machine learning tasks require sampling a subset of items from a collection based on a parameterized distribution. The Gumbel-softmax trick can be used to sample a single item, and allows for low-variance reparameterized gradients with respect to the parameters of the underlying distribution. However, stochastic optimization involving subset sampling is typically not reparameterizable. To overcome this limitation, we define a continuous relaxation of subset sampling that provides reparameterization gradients by generalizing the Gumbel-max trick. We use this approach to sample subsets of features in an instance-wise feature selection task for model interpretability, subsets of neighbors to implement a deep stochastic k-nearest neighbors model, and sub-sequences of neighbors to implement parametric t-SNE by directly comparing the identities of local neighbors. We improve performance in all these tasks by incorporating subset sampling in end-to-end training.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com