Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Frank-Wolfe for Composite Convex Minimization (1901.10348v3)

Published 29 Jan 2019 in math.OC, cs.AI, cs.LG, and stat.ML

Abstract: A broad class of convex optimization problems can be formulated as a semidefinite program (SDP), minimization of a convex function over the positive-semidefinite cone subject to some affine constraints. The majority of classical SDP solvers are designed for the deterministic setting where problem data is readily available. In this setting, generalized conditional gradient methods (aka Frank-Wolfe-type methods) provide scalable solutions by leveraging the so-called linear minimization oracle instead of the projection onto the semidefinite cone. Most problems in machine learning and modern engineering applications, however, contain some degree of stochasticity. In this work, we propose the first conditional-gradient-type method for solving stochastic optimization problems under affine constraints. Our method guarantees $\mathcal{O}(k{-1/3})$ convergence rate in expectation on the objective residual and $\mathcal{O}(k{-5/12})$ on the feasibility gap.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.