Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understanding and Training Deep Diagonal Circulant Neural Networks (1901.10255v3)

Published 29 Jan 2019 in cs.LG and stat.ML

Abstract: In this paper, we study deep diagonal circulant neural networks, that is deep neural networks in which weight matrices are the product of diagonal and circulant ones. Besides making a theoretical analysis of their expressivity, we introduced principled techniques for training these models: we devise an initialization scheme and proposed a smart use of non-linearity functions in order to train deep diagonal circulant networks. Furthermore, we show that these networks outperform recently introduced deep networks with other types of structured layers. We conduct a thorough experimental study to compare the performance of deep diagonal circulant networks with state of the art models based on structured matrices and with dense models. We show that our models achieve better accuracy than other structured approaches while required 2x fewer weights as the next best approach. Finally we train deep diagonal circulant networks to build a compact and accurate models on a real world video classification dataset with over 3.8 million training examples.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.