Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsupervised Person Re-identification by Deep Asymmetric Metric Embedding (1901.10177v1)

Published 29 Jan 2019 in cs.CV

Abstract: Person re-identification (Re-ID) aims to match identities across non-overlapping camera views. Researchers have proposed many supervised Re-ID models which require quantities of cross-view pairwise labelled data. This limits their scalabilities to many applications where a large amount of data from multiple disjoint camera views is available but unlabelled. Although some unsupervised Re-ID models have been proposed to address the scalability problem, they often suffer from the view-specific bias problem which is caused by dramatic variances across different camera views, e.g., different illumination, viewpoints and occlusion. The dramatic variances induce specific feature distortions in different camera views, which can be very disturbing in finding cross-view discriminative information for Re-ID in the unsupervised scenarios, since no label information is available to help alleviate the bias. We propose to explicitly address this problem by learning an unsupervised asymmetric distance metric based on cross-view clustering. The asymmetric distance metric allows specific feature transformations for each camera view to tackle the specific feature distortions. We then design a novel unsupervised loss function to embed the asymmetric metric into a deep neural network, and therefore develop a novel unsupervised deep framework named the DEep Clustering-based Asymmetric MEtric Learning (DECAMEL). In such a way, DECAMEL jointly learns the feature representation and the unsupervised asymmetric metric. DECAMEL learns a compact cross-view cluster structure of Re-ID data, and thus help alleviate the view-specific bias and facilitate mining the potential cross-view discriminative information for unsupervised Re-ID. Extensive experiments on seven benchmark datasets whose sizes span several orders show the effectiveness of our framework.

Citations (149)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.