Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Deep Generative Graph Distribution Learning for Synthetic Power Grids (1901.09674v3)

Published 17 Jan 2019 in cs.SI, cs.LG, and stat.ML

Abstract: Power system studies require the topological structures of real-world power networks; however, such data is confidential due to important security concerns. Thus, power grid synthesis (PGS), i.e., creating realistic power grids that imitate actual power networks, has gained significant attention. In this letter, we cast PGS into a graph distribution learning (GDL) problem where the probability distribution functions (PDFs) of the nodes (buses) and edges (lines) are captured. A novel deep GDL (DeepGDL) model is proposed to learn the topological patterns of buses/lines with their physical features (e.g., power injection and line impedance). Having a deep nonlinear recurrent structure, DeepGDL understands complex nonlinear topological properties and captures the graph PDF. Sampling from the obtained PDF, we are able to create a large set of realistic networks that all resemble the original power grid. Simulation results show the significant accuracy of our created synthetic power grids in terms of various topological metrics and power flow measurements.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.