Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Principled analytic classifier for positive-unlabeled learning via weighted integral probability metric (1901.09503v6)

Published 28 Jan 2019 in stat.ML and cs.LG

Abstract: We consider the problem of learning a binary classifier from only positive and unlabeled observations (called PU learning). Recent studies in PU learning have shown superior performance theoretically and empirically. However, most existing algorithms may not be suitable for large-scale datasets because they face repeated computations of a large Gram matrix or require massive hyperparameter optimization. In this paper, we propose a computationally efficient and theoretically grounded PU learning algorithm. The proposed PU learning algorithm produces a closed-form classifier when the hypothesis space is a closed ball in reproducing kernel Hilbert space. In addition, we establish upper bounds of the estimation error and the excess risk. The obtained estimation error bound is sharper than existing results and the derived excess risk bound has an explicit form, which vanishes as sample sizes increase. Finally, we conduct extensive numerical experiments using both synthetic and real datasets, demonstrating improved accuracy, scalability, and robustness of the proposed algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.