Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Causal Discovery with a Mixture of DAGs (1901.09475v2)

Published 28 Jan 2019 in stat.ML, cs.LG, and stat.AP

Abstract: Causal processes in biomedicine may contain cycles, evolve over time or differ between populations. However, many graphical models cannot accommodate these conditions. We propose to model causation using a mixture of directed cyclic graphs (DAGs), where the joint distribution in a population follows a DAG at any single point in time but potentially different DAGs across time. We also introduce an algorithm called Causal Inference over Mixtures that uses longitudinal data to infer a graph summarizing the causal relations generated from a mixture of DAGs. Experiments demonstrate improved performance compared to prior approaches.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)