Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Spectrum Data Poisoning with Adversarial Deep Learning (1901.09247v1)

Published 26 Jan 2019 in cs.NI and cs.LG

Abstract: Machine learning has been widely applied in wireless communications. However, the security aspects of machine learning in wireless applications have not been well understood yet. We consider the case that a cognitive transmitter senses the spectrum and transmits on idle channels determined by a machine learning algorithm. We present an adversarial machine learning approach to launch a spectrum data poisoning attack by inferring the transmitter's behavior and attempting to falsify the spectrum sensing data over the air. For that purpose, the adversary transmits for a short period of time when the channel is idle to manipulate the input for the decision mechanism of the transmitter. The cognitive engine at the transmitter is a deep neural network model that predicts idle channels with minimum sensing error for data transmissions. The transmitter collects spectrum sensing data and uses it as the input to its machine learning algorithm. In the meantime, the adversary builds a cognitive engine using another deep neural network model to predict when the transmitter will have a successful transmission based on its spectrum sensing data. The adversary then performs the over-the-air spectrum data poisoning attack, which aims to change the channel occupancy status from idle to busy when the transmitter is sensing, so that the transmitter is fooled into making incorrect transmit decisions. This attack is more energy efficient and harder to detect compared to jamming of data transmissions. We show that this attack is very effective and reduces the throughput of the transmitter substantially.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.