Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Language Model Pre-training for Hierarchical Document Representations (1901.09128v1)

Published 26 Jan 2019 in cs.CL

Abstract: Hierarchical neural architectures are often used to capture long-distance dependencies and have been applied to many document-level tasks such as summarization, document segmentation, and sentiment analysis. However, effective usage of such a large context can be difficult to learn, especially in the case where there is limited labeled data available. Building on the recent success of LLM pretraining methods for learning flat representations of text, we propose algorithms for pre-training hierarchical document representations from unlabeled data. Unlike prior work, which has focused on pre-training contextual token representations or context-independent {sentence/paragraph} representations, our hierarchical document representations include fixed-length sentence/paragraph representations which integrate contextual information from the entire documents. Experiments on document segmentation, document-level question answering, and extractive document summarization demonstrate the effectiveness of the proposed pre-training algorithms.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.