Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Subspace Robust Wasserstein Distances (1901.08949v5)

Published 25 Jan 2019 in cs.LG and stat.ML

Abstract: Making sense of Wasserstein distances between discrete measures in high-dimensional settings remains a challenge. Recent work has advocated a two-step approach to improve robustness and facilitate the computation of optimal transport, using for instance projections on random real lines, or a preliminary quantization of the measures to reduce the size of their support. We propose in this work a "max-min" robust variant of the Wasserstein distance by considering the maximal possible distance that can be realized between two measures, assuming they can be projected orthogonally on a lower $k$-dimensional subspace. Alternatively, we show that the corresponding "min-max" OT problem has a tight convex relaxation which can be cast as that of finding an optimal transport plan with a low transportation cost, where the cost is alternatively defined as the sum of the $k$ largest eigenvalues of the second order moment matrix of the displacements (or matchings) corresponding to that plan (the usual OT definition only considers the trace of that matrix). We show that both quantities inherit several favorable properties from the OT geometry. We propose two algorithms to compute the latter formulation using entropic regularization, and illustrate the interest of this approach empirically.

Citations (145)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.