Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

One-Class Convolutional Neural Network (1901.08688v1)

Published 24 Jan 2019 in cs.CV

Abstract: We present a novel Convolutional Neural Network (CNN) based approach for one class classification. The idea is to use a zero centered Gaussian noise in the latent space as the pseudo-negative class and train the network using the cross-entropy loss to learn a good representation as well as the decision boundary for the given class. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. The proposed One Class CNN (OC-CNN) is evaluated on the UMDAA-02 Face, Abnormality-1001, FounderType-200 datasets. These datasets are related to a variety of one class application problems such as user authentication, abnormality detection and novelty detection. Extensive experiments demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods. The source code is available at : github.com/otkupjnoz/oc-cnn.

Citations (142)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.