Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Class Convolutional Neural Network (1901.08688v1)

Published 24 Jan 2019 in cs.CV

Abstract: We present a novel Convolutional Neural Network (CNN) based approach for one class classification. The idea is to use a zero centered Gaussian noise in the latent space as the pseudo-negative class and train the network using the cross-entropy loss to learn a good representation as well as the decision boundary for the given class. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. The proposed One Class CNN (OC-CNN) is evaluated on the UMDAA-02 Face, Abnormality-1001, FounderType-200 datasets. These datasets are related to a variety of one class application problems such as user authentication, abnormality detection and novelty detection. Extensive experiments demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods. The source code is available at : github.com/otkupjnoz/oc-cnn.

Citations (142)

Summary

We haven't generated a summary for this paper yet.