Papers
Topics
Authors
Recent
2000 character limit reached

Guarantees for Spectral Clustering with Fairness Constraints (1901.08668v2)

Published 24 Jan 2019 in stat.ML, cs.DS, and cs.LG

Abstract: Given the widespread popularity of spectral clustering (SC) for partitioning graph data, we study a version of constrained SC in which we try to incorporate the fairness notion proposed by Chierichetti et al. (2017). According to this notion, a clustering is fair if every demographic group is approximately proportionally represented in each cluster. To this end, we develop variants of both normalized and unnormalized constrained SC and show that they help find fairer clusterings on both synthetic and real data. We also provide a rigorous theoretical analysis of our algorithms on a natural variant of the stochastic block model, where $h$ groups have strong inter-group connectivity, but also exhibit a "natural" clustering structure which is fair. We prove that our algorithms can recover this fair clustering with high probability.

Citations (144)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.